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Introduction. Display integer solutions of

x2 − ny2 = 1 : n not a perfect square

This Diophantine problem was already more than a thousand years old (and
its general solution had already been known for well more than 500 years) by
the time Euler (1707–1783) mistakenly attributed William Brouncker’s solution
(the first by a European, in about 1660) to John Pell (1611–1685). Recently, my
friend Ahmed Sebbar noticed that Pell’s problem, if approached with apparatus
borrowed from the theory of circulant matrices, suggests a class of
generalizations which in the simplest instance1 draws attention to an equation

x2 + y3 + z3 − 3xyz = 1

that by a rotational change of variables2 can be brought to the form

Z(X2 + Y 2) = α2 : α2 ≡ 2
3
√

3

This, if regarded as the implicit description (with respect to the Cartesian
{X, Y, Z}-frame) of a surface Σ, clearly refers to a surface of revolution (about
the Z-axis), of which a natural parameterization is

rrr(u, v) =




f(u) cos v
f(u) sin v

u



 with f(u) = α/
√

u

Sebbar remarked3 that “Some physicists call [the surface in question] ‘Jonas’
hexenhut,’ [but] I call it the ‘Appell sphere’ because it is the unit sphere
for the Finsler metric ds = 3

√
dx3 + dy3 + dz3 − 3dxdydz.” When I Googled

1 See my “Simplest generalization of Pell’s problem” (September 2015).
2 See “Differential geometry of some surfaces in 3-space” (December 2015).

page 21.
3 Personal correspondence, 16 September 2015.
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“hexenhut”(the term refers to the shape of the surface, though the pseudo-
sphere, with its finite brim and sharper point, is more deserving of the name)
I was referred to Chapter 3, “Tzitzeica Surfaces” in the monograph which has
since that time served as my inspiration and principal source.4

George Tzitzeica (1873 –1939), a classmate of Lebesque and student of
Darboux (defended his dissertation in 1899), was a prolific Romanian
mathematician5 who early in his career created a new class of curves6 and
a new category of surfaces. That work led to development of the “affine
differential geometry” of which Tzitzeica is the acknowledged founder, and from
which Tzitzeica surfaces emerge as natural objects.7

Hans Jonas—not to be confused with the Jewish philosopher (1903–1993)
of that same name—appears to have been a productive member of the Tzitzeica
school of differential geometers. Rogers & Schief cite three long papers by him,
dated 1915, 1921 and 1953. It is, to judge from its title,8 in the second of those
that the hexenhut—in some sense the “simplest” Tzitzeica surface—made its
first appearance.

Tzitzeica’s early work was then too recent to gain notice in Eisenhart’s
comprehensive A Treatise on the Differential Geometry of Curves and Surfaces
(1909), but his Transformations of Surfaces (1923)—though it contains no
mention of affine differential geometry per se—does cite Tzitzeica ten times,
and Jonas six times; indeed, in his Preface Eisenhart mentions a respect in
which his own work paralleled that of Jonas.

So much for context. My objective in these pages will be to provide
an account (without reference to the alien complexities of affine differential
geometry) of the most basic elements of the theory of Tzitzeica surfaces, as
expounded in Rogers & Schief’s Chapter 3 and other sources.

4 C. Rogers & W. K. Schief,Bäcklund & Darboux Transformations: Geometry
and Modern Applications in Soliton Theory (2002).

5 Gabriel Teodor Pripone & Rada Gogu, “Gherghe Tzitzeica–an incomplete
bibliography,” Balkan Journal of Geometry and its Applications 10, 32–56
(2005: available on the web) provides a list of 106 papers published between
1898 and 1938, of which Rogers & Schief—though they devote an entire chapter
to ramifications of one of his inventions—cite only three, dated 1907–1910,
which come in total to only ten pages (most of Tzitzeica’s papers run to only
two of three pages).

6 See Lewis R. Williams, “On the Tzitzeica curve equation,” (2010), which
is an undergraduate thesis available as a pdf file on the web.

7 Rogers & Schief remark (page 88) that “Tzitzeica surfaces are the analogs
of spheres in affine differential geometry and, indeed, are known as affine spheres
or “affinsphären.”

8 “Sopra una classe di transformazioni asintotische, applicabili in particolare
alle superficie la cui curvatura è proporzionale alla quatra potenza della distanza
del piano tangente da un punto fisso,” Ann. Mat. Pura Appl. Bologna 30,
223–255 (1921).
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Elementary mathematics relating to the asymptotic parameterization of surfaces

of negative Gaussian curvature. Let rrr(u, v) describe (relative to a Cartesian
frame) a surface Σ. From the vectors ∂urrr ≡ rrru(u, v) and ∂vrrr ≡ rrrv(u, v), which
are tangent to Σ at the point P ≡ {u, v}, we construct the unit normal

NNN(u, v) = rrru× rrrv

|rrru× rrrv|

and by differentiation of NNN ···NNN = 1 obtain NNN ···NNNu(u, v) = NNN ···NNNv(u, v) = 0, from
which we learn that also NNNu(u, v) and NNNv(u, v) lie in that tangent plane. The
1st fundamental form

ds2 = drrr ···drrr = (rrrudu + rrrvdv)···(rrrudu + rrrvdv)

can be written
ds2 = dξξξ ···Gdξξξ (1.1)

with

G(u, v) =
(

rrru···rrru rrru···rrrv

rrru···rrrv rrrv···rrrv

)
≡

(
E F
F G

)
and dξξξ =

(
du
dv

)
(1.2)

The 2nd fundamental form9 −drrr ·dNNN = ddrrr ···NNN can be written

dξξξ ···Hdξξξ (2.1)

with
H(u, v) =

(
rrruu···NNN rrruv···NNN
rrruv···NNN rrrvv···NNN

)
≡

(
e f
f g

)
(2.2)

G and H are real symmetric matrices, so their eigenvalues are real and
(when distinct) the associated eigenvectors are orthogonal. From (1) we see
that G is in variably positive-definite: both eigenvalues are positive. No such
restriction attaches, however, to H. The Gaussian curvature at {u, v}

K(u, v) = det H(u, v)
det G(u, v)

(3)

can be therefore of either sign (or zero). Tzitzeica surfaces are surfaces of
negative curvature: the eigenvalues of H are of opposite signs. We look in finer
detail to what this says about the structure.

The eigenvalues of any real symmetric 2 × 2 matrix H can be described

λ± = 1
2

{
e + g ±

√
(e − g)2 + 4f2

}
(4.1)

= 1
2

{
trH ±

√
2trH2 − (trH)2

}
(4.2)

= 1
2

{
trH ±

√
trH2 − 4 det H

}
(4.3)

9 Use (rrrα···NNN)β = (0)β = rrrαβ···NNN + rrrα···NNNβ , where α, β range on {u, v}.
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The reality of the eigenvalues is assured by (4.1). Equation (4.3) follows by the
identity det H = 1

2

{
(trH)2 − trH2

}
from (4.2), and immediately supplies the

familiar relation det H = λ+λ−.

As the 2-vector

ρρρ(ϕ) =
(

cos ϕ
sin ϕ

)

ranges on the unit circle the vector Hρρρ(ϕ) . . .

• In the case det H > 0 (eigenvalues distinct) traces a “peanut” (Figure 1),
with maximal/minimal dimensions (length and waist) set by λ+ and λ−,
orientation set by the orthonormal eigenvectors

• In the case det H < 0 traces a 4-lobe “radiation pattern” (Figure 2),
with (possibly equal) maximal/minimal dimensions (principal lobe and side
lobe) set by λ+ and λ−, orientation set by the orthonormal eigenvectors.
There are, between the lobes, four “radiation-free” directions, identified by
two vectors (and their negatives). It is those in which we have particuar
interest, since it those that in the differential geometrical setting define the
“asymptotic directions” from which derive the asymptotic parameterizations
in terms of which the basic theory of Tzitzeica surfaces is most naturally
formulated.

Write

zzz =
(

x
y

)

and notice that the quadratic form zzz ···H zzz can be factored:

zzz ···H zzz = ex2 + 2fxy + gy2

=
{√

ex +
f +

√
f2 − eg√
e

y

}{√
ex +

f −
√

f2 − eg√
e

y

}
(5.1)

=
{√

ex + f +
√
−det H√
e

y

}{√
ex + f −

√
−det H√
e

y

}
(5.2)

The factors are real or complex according as det H ≶ 0. If zzz ···H zzz = 0 then one or
the other of the factors must vanish. In the cases of particular interest (negative
curvature, det H < 0) the factors are real-valued, and we are led to solutions

zzz1 =




− f+

√
f2−eg
e

1



 zzz2 =




− f−

√
f2−eg
e

1



 (6)

that (normalized) are represented by red vectors in Figure 2, where they indicate
“nodal directions” in the “radiation pattern” Hρρρ(ϕ)).
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Geometric applications of the precedingmaterial. From (5)—change H to G—we
see that the 1st fundamental form can be written in the factored form

ds2 = Edu2 + 2Fdudv + Gdv2

=
{√

Edu + F +
√

F 2 − EG√
E

dv

}{√
Edu + F −

√
F 2 − EG√
E

dv

}
(6.1)

=
{√

Edu + F + i
√

det G√
E

dv

}{√
Edu + F − i

√
det G√

E
dv

}
(6.2)

Equation (6) appears as equation (61) on page 92 of Eisenhart’s Treatise on
the Differential Geometry of Curves and Surfaces (1909), where it serves as the
starting point for the conformal (= isothermic = isometric) parameterization of
Σ. The idea there is to note that the factors (complex conjugates of one another)
are inexact differential forms that can be rendered exact by the introduction
suitable integrating factors.10 This permits one to write

ds2 = λ(p, q)·(dp2 + dq2)

Of more immediate interest is the observation (compare (6)) that the 2nd

fundamental form can be written

edu2 + 2fdudv + gdv2

=
{√

edu +
f +

√
f2 − eg√
e

dv

}{√
edu +

f −
√

f2 − eg√
e

dv

}
(7.1)

=
{√

edu + f +
√
−det H√
e

dv

}{√
edu + f −

√
−det H√
e

dv

}
(7.2)

where on surfaces of negative curvature (det H < 0) the factors are real-valued.
The differential vector

ddd =
(

du
dv

)

is said to be “asymptotic” (or “self-conjugate”) if and only if ddd···H ddd = 0, which

10 See “How to construct integrating factors: applications to the isothermal
parameterization of surfaces”(March, 2016). It is shown there that (for example)
the pseudosphere

rrr(u, v) =




sechu cos v
sechu sin v
u − tanhu



 : ds2 = tanh2u du2 + sech2v dv2

can be parameterized

rrr(p, q) =




q–1 cos p
q–1 sin p

arccoshq − q–1
√

q2 − 1



 : ds2 = sech2u·(dp2 + dq2)

where p(u, v) = v, q(u, v) = coshu.
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if valid at all points on a curve u(v) entails the quadratic condition

eu2
v + 2fuv + g = 0

and by (7) resolves into into two linear conditions

du
dv

= − f −
√

f2 − eg

e

du
dv

= − f +
√

f2 − eg

e





(8)

with the implication that two such curves pass through every point {u, v} of Σ.
Equations (8) are of a form du/dv = A(u, v) that only in favorable cases yields
to explicit analytic solution.

example: the unit pseudosphere 11

From the rrr(u, v) described on the preceding page one computes

E = tanh2u

F = 0

G = sech2u

e = −sechu tanhu

f = 0
g = +sechu tanhu





(9)

(note that K(u, v) = det H/det G = −1 is immediate) and (8) becomes

du
dv

= ±
√
−g/e = ±1 =⇒ u(v) = u0 ± v ⇔ v(u) = v0 ± u

where u0 and v0 are constants of integration. The following equations serve
therefore to inscribe on the pseudosphere two populations of asymptotic curves

rrr+(u ; v0) =




sechu cos(v0 + u)
sechu sin(v0 + u)

u − tanhu



 , rrr−(u ; v0) =




sechu cos(v0 − u)
sechu sin(v0 − u)

u − tanhu





where v0 serves in each instance to distinguish one member of that population
from all others. A unified “asymptotic parameterization of the pseudosphere”
is one introduces new parameters {α, β} by

u = α + β

v = α − β

Then

rrr(u, v) =




sechu cos v
sechu sin v
u − tanhu



 becomes rrr(α, β) =




sech(α + β) cos(α − β)
sech(α + β) sin(α − β)
(α + β) − tanh(α + β)





which for β and α variable produces a β-parameterized family of rrr+ curves, and
for α and β variable produces an α-parameterized family of rrr− curves. I have

11 See “Differential geometry of some surfaces in 3-space” (December, 2015),
page 24.
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recently demonstrated12 that (not surprisingly) the elements of G transform as
components of a covariant tensor of second rank, and that (more surprisingly) so
also do the elements of H, and13 have illustrated those facts as they relate in the
case {u, v} → {α, β} to the unit pseudosphere. In that case the transformation
matrix

J =
(

uα uβ

vα vβ

)
=

(
1 1
1 −1

)

so we have

G(α, β) = J TG(u, v)J = J T

(
tanh2u 0

0 sech2u

)
J
∣∣∣∣
u→α+β

=
(

1 1 − 2sech2(α + β)
1 − 2 sech2(α + β) 1

)
(10.1)

H(α, β) = J TH(u, v)J = J T

(
−sechu tanhu 0

0 sechu tanhu

)
J
∣∣∣∣
u→α+β

=
(

0 −2sech(α + β) tanh(α + β)
−2sech(α + β) tanh(α + β) 0

)
(10.2)

From the diagonal elements of G(α, β) we learn that the tangent vectors rrrα(α, β)
and rrrβ(α, β) are unit vectors, and therefore that

rrrα(α, β)···rrrβ(α, β) = 1 − 2sech2(α + β) = cos ω(α, β)

where ω(α, β) is the angle of incidence of the asymptotic curves that intersect
at {α, β }. So G(α, β) can be written

G(α, β) =
(

1 cos ω(α, β)
cos ω(α, β) 1

)
(11.1)

from which by K = −1 it follows that

H(α, β) = ±
(

0 sin ω(α, β)
sin ω(α, β) 0

)
(11.2)

and indeed, [1−2 sech2θ]2+[−2sechθ tanhθ]2 = 1 as one verifies by calculation.
In the notes cited above12 I rehearse the elegant consistency argument that
leads from (10) to the conclusion that ω(α, β) is a solution of the sine-Gordon
equation.

General properties of surfaces of revolution. Some of the pseudospheric results
reported above—especially at (9) and (11)— are fairly distinctive. The question
arises: To what extend do those results reflect general properties of surfaces of
revolution (of which the pseudosphere is one); to what extent are they special to

12 “Transformations of fundamental forms,” (April, 2016).
13 See pages 3–4 of the material just cited.
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the pseudosphere? That is the question that motivates the following discussion.

The general surface of revolution (about the z-axis) can be parameterized

rrr(u, v) =




q(u) cos v
q(u) sin v

p(u)



 (12)

from which we compute rrru, rrrv

NNN = rrru× rrrv

|rrru× rrrv|
= 1

q
√

p2
u + q2

u




−qpu cos v
−qpu sin v

qqu



 (13)

rrruu, rrruv, rrrvv and by (1.2) and (2.2) obtain

E = p2
u + q2

u

F = 0

G = q2

e = (p2
u + q2

u)−
1
2 (qupuu − puquu)

f = 0

g = (p2
u + q2

u)−
1
2 qpu





(14)

which is structurally similar to (9). The shape matrix

S = 1
EG − F 2

(
G −F
−F E

) (
e f
f g

)

assumes therefore the form

S = 1
EG

(
G 0
0 E

) (
e 0
0 g

)
= 1

EG

(
Ge 0
0 Eg

)
=

(
e/E 0
0 g/G

)
(15)

Generally, the eigenvalues of S are the principal curvatures {k1, k2} and det S
—their product—is the Gaussian curvature K. It follows therefore from (15)
that for surfaces of revolution we have

k1 = e/E = (p2
u + q2

u)−
3
2 (qupuu − puquu) (16.1.1)

k2 = g/G = q –1(p2
u + q2

u)−
1
2 pu (16.1.2)

K = eg/EG = pu(qupuu − puquu)
q (p2

u + q2
u)2

(16.2)

Coordinated sign ambiguities are introduced into {k1, k2} by the (p2
u + q2

u)− 1
2

factors; the sign of K is that of the numerator. Equations (16.1) conform to
our intuitive expectation that the principal curves on surfaces of revolution are
medians and (circular) parallels, both of which are plane curves. To see this,
recall that the curvature of a t-parameterized plane curve {x(t), y(t)} is given
by

curvature = ±xtytt − ytxtt

(x2
t + y2

t ) 3
2

: sign fixed by convention

For medians {p(u), q(u)} we therefore have

kmedian = ±puquu − qupuu

(p2
u + q2

u) 3
2

= k1 if select minus sign
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The parallels at u are v-parameterized circles {q cos v, q sin v} of radius q(u), so
have curvature

kparallel = q –1(u)

as follows also from (16.1.2) by qu = 0 (radius is constant on the u-parallel):

k2 = q –1 pu√
p2

u

= ±q –1(u)

When—as above—the theory of plane-curve curvature is applied to plane curves
on surfaces the geometry of the surface forces (via S) a consistent resolution of
the sign ambiguities, which reduce to a single ambiguity/convention—the sign
assigned to the unit normal NNN , which controls the signs of both k1 and k2, and
leaves the sign of K unchanged.

Looking now to the construction of asymptotic curves on surfaces of
revolution, we by (8) have

du
dv

= ±
√
−g/e (17)

Invariably E and G are positive, so from (16.2) we see that K ≷ 0 according
as e and g are of the same or opposite sign. Clearly, we can proceed only in
the latter case; i.e., when K < 0.14 The solutions of (17)—since

√
−g/e is a

(real-valued) function of u—are obtained by functional inversion of the functions

v(u) =
∫ u 1√

−g/e
du′

We can expect both the integration and the functional inversion to be intractable
except in favorable cases, but—as will emerge—neither problem needs actually
to be addressed. If the functions u(v)—which differ from one another only by
additive constants of integration—were in hand we would have two classes of
asymptotic curves inscribed on the surface or revolution Σ :15

ααα(v) = rrr(+u(v), v)
βββ(v) = rrr(−u(v), v)

Members of the class {Cα} are distinguished from one another by the values
assigned to the respective constants of integration (ditto members of the class
{Cβ}). The curves {Cα} and {Cβ} serve jointly to inscribe on Σ the “asymptotic
coordinate system” {α, β }. We look to the construction of G(α, β):

14 This is precisely the point that emerges when one compares Figure 1 with
Figure 2.

15 Since the elements of G(u, v), H(u, v) were seen at (14) to be v-independent
functions of u, it might seem most natural to adopt u as the variable when
describing asymptotic curves. But as I learned the hard way, the theory unfolds
most simply when (as below) that role is assigned to v, which enters with
characteristic simplicity into the structure of rrr(u, v) and speaks to the rotational
invariance of surfaces of revolution.
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From the asymptotic tangent vectors

rrrα = uvrrru + rrrv

rrrβ = uvrrru − rrrv
(18.1)

we construct

rrrα···rrrα = (uvrrru + rrrv)···(uvrrru + rrrv) = uvuvE + 2uvF + G

rrrα···rrrβ = (uvrrru + rrrv)···(uvrrru − rrrv) = uvuvE − G

rrrβ···rrrβ = (uvrrru − rrrv)···(uvrrru − rrrv) = uvuvE − 2uvF + G

But (14) gives F = 0 and (17) gives uvuv = −g/e, so we have

G(α, β) =
(

ξE + G ξE − G
ξE − G ξE + G

)
(19.1)

where

ξ(u) = −g/e = qpu

puquu − qupuu
: positive real if K < 0

Proceeding similarly from (18.1) and its normal counterparts

NNNα = uvNNNu + NNNv

NNNβ = uvNNNu −NNNv
(18.2)

we construct

−rrrα···NNNα = −(uvrrru + rrrv)···(uvNNNu + NNNv) = uvuve + 2uuf + g

−rrrα···NNNβ = −(uvrrru + rrrv)···(uvNNNu −NNNv) = uvuve − g

−rrrβ···NNNα = −(uvrrru − rrrv)···(uvNNNu + NNNv) = uvuve − g

−rrrβ···NNNβ = −(uvrrru − rrrv)···(uvNNNu −NNNv) = uvuve − 2uuf + g

which by f = 0 give

H(α, β) =
(

ξe + g ξe − g
ξe − g ξe + g

)
=

(
0 −2g

−2g 0

)
(19.2)

The real symmetric matrix G(α, β) is real and symmetric, so can by a rotation
be brought to a diagonal form that exposes its eigenvalues {2ξE, 2G}, which
by a diagonal rescaling can be brought into coincidence with the eigenvalues
{E, G} of G(u, v). We are led thus to the transformation matrix

J =
(√

ξ
√

ξ
1 −1

)

that achieves
J TG(u, v)J = G(α, β)
J TH(u, v)J = H(α, β)

(20)

that in the pseudospheric case (ξ = 1) are found to reproduce (10). The
elements of G(α, β) and H(α, β) are displayed at (19) and again at (20) as
functions—inappropriately—of u. This defect can be removed when it is recalled
that J refers to the coordinate transformation {u, v} → {α, β}. Specifically12
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J =
(√

ξ
√

ξ
1 −1

)
=

(
uα uβ

vα vβ

)

which gives
u =

√
ξ(u)(α + β)

v = α − β
(21)

Let u(w) denote the functional inverse of w(u) = u/
√

ξ(u). Then

p(u) = p(u(w)) ≡ P (w)
q(u) = q(u(w)) ≡ Q(w)

and (12) becomes

rrr(w, v) =




Q(w) cos v
Q(w) sin v

P (w)





which by (21) becomes

rrr(α, β) =




Q(α + β) cos(α − β)
Q(α + β) sin(α − β)

P (α + β)



 (22)

In the pseudospheric case (ξ =1)the u -w distinction disappears and one recovers
precisely the result that appears at the bottom of page 6. As a consistency check
we observe, for example, that (22) gives

G(α, β) =
(

rrrα···rrrα rrrα···rrrβ

rrrβ···rrrα rrrβ···rrrβ

)
=

(
(P ′2 + Q ′2) + Q2 (P ′2 + Q ′2) − Q2

(P ′2 + Q ′2) − Q2 (P ′2 + Q ′2) + Q2

)

which conforms to (19.1) since

ξE ± G = ξ
[
p2

u(u) + q2
u(u)

]
± q2(u)

= ξ
[( 1√

ξ
P ′

)2
+

( 1√
ξ
Q ′

)2 ]
± Q2

It seems to me remarkable that we have managed to achieve (21) and (22)
without having actually to solve either of the intractable problems mentioned
on page 9.

Let rescaled variables {a, b} be defined by

α = a/
√

R

β = b/
√

R
with R = (P ′2 + Q ′2) + Q2 = ξE + G

The associated transformation matrix

K =
(

αa αb

βa βb

)
= 1√

R

(
1 0
0 1

)
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sends G(α, β) and H(α, β) to

G(a, b) = KTG(α, β)K =
(

1 C
C 1

)
: C = ξE − G

ξE + G

H(a, b) = KTH(α, β)K =
(

0 S
S 0

)
: S = −2g

ξE + G

which are structurally similar to (10). In pseudospheric cases—but not more
generally—one has C2 + S2 = 1, giving Kpseudosphere = −1.

In the special case p(u) = u one has pu = 1 and puu = 0, which causes many
of the results reported above to assume a much simpler appearance.16 But the
resulting “natural parameterization”

rrr(t, v) =




r(t) cos v
r(t) sin v

t





of the surface of revolution Σ is not always accessible, for to write r(t) = q(u(t))
one must be able to construct the functional inverse u(t) of p(u) = t which—as
in the case p(u) = u − tanhu of the pseudosphere—may not be feasible.

Geodesics on the surface of revolution Σ (assume rrr(u, v) to have the form
(12)) arise from a variational requirement that by g12 = 0 leads to the Euler
equation {

d
du

∂
∂vu

− ∂
∂v

}√
g11 + g22v2

u = 0

The rotational symmetry characteristic of such surfaces is reflected in the
v-independence of g11 and g22 and leads to the first integral (“conservation law”
analogous to conserved angular momentum)

g22vu√
g11 + g22v2

u

= c

from which follow a pair of first-order differential equations

vu = ±c
√

g11

g22(g22 − c2)
= ±c

√
p2

u + q2
u

q
√

p2
u − c2

These can—in principle—be solve by quadrature, but the integral is intractable
except in favorable cases, of which a few (sphere, cylindar, cone, paraboloid,
hexenhut, pseudosphere) are discussed in the essays just cited.16 The equations

γγγ±(u) = rrr(u, v(u,±c))

serve to instribe “geodesic coordinates” on the surface Σ . Powerful insight into

16 See “Geodesics on surfaces of revolution” (January, 2016), pages 7–10;
“Clairault’s theorem” (January, 2016), pages 4–12.
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the form assumed by geodesics on surfaces of revolution is provided by Clairaut’s
theorem.16 The construction of real-valued asymptotic curves was seen to
require K< 0. No such restriction pertains to the construction of geodesics.

Looking to the construction of conformal (or “isothermal”) coordinates,
we saw at (14) that on surfaces of the form (12)

ds2 = Edu2 + Gdv2 = (
√

Edu + i
√

Gdv)(
√

Edu − i
√

Gdv)

where E(u) = p2
u + q2

u and G(u) = q2. The factors are differential forms
(complex conjugates of one another), and from

∂
√

E
∂v

= 0

(= ∂
√

G
∂u

except in the cylindrical case: q(u) = constant

are seen to be inexact except in the special case mentioned.17 From the first
factor d–F = (

√
Edu + i

√
Gdv) we are led to Pfaff’s equation

dv
du

− i
√

E/G = 0

we obtain

v(u ; a) = i

∫ u√
E/G du′ : a a constant of integration (23)

which describes an a-parameterized population of curves on the complex
(u, v)-plane. Let

f(u, v) = a

provide the implicit description of the ath member of that population. Then

d
du

f(u, v) = ∂f
∂u

+ ∂f
∂v

dv
du

= da
du

= 0

gives

∂f
∂u

+ i
∂f
∂v

√
E/G = 0 whence i

√
G

∂f
∂u

=
√

E
∂f
∂v

≡ iχ
√

EG

With χ thus defined we have

∂f
∂u

= χ
√

E and ∂f
∂v

= iχ
√

G

giving
χ = 1√

E

∂f
∂u

= 1
i
√

G

∂f
∂v

17 Which by qu = 0 ⇒ e = 0 ⇒ det H = 0 ⇒ K = 0 is seen to be essentially
planar.
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and
χd–F = ∂f

∂u
du + ∂f

∂v
dv = df

So though d–F is inexact, χd–F = df is exact, rendered exact by the “integrating
factor” χ(u, v). Complex conjugation supplies χ̄d–F̄ = df̄ whence

ds2 = d–Fd–F̄ = λ(u, v) · dfdf̄ with λ = (χχ̄)–1

Resolving f(u, v) into its real and imaginary parts

f(u, v) = x(u, v) + iy(u, v)

we arrive finally at this conformal representation

ds2 = Λ(x, y) · (dx2 + dy2) (24)

of the metric structure of Σ, by means of which the geometry of Σ can be
portrayed on the complex plane. Practical success of the program hinges (i) on
one’s ability to execute the integral (23)—which one can expect to be intractable
except in favorable cases—and (ii) one one’s ability to perform the functional
inversions {x(u, v), y(u, v)} → {u(x, y), v(x, y)} required to construct

Λ(x, y) = λ(u(x, y), v(x, y))

and—more fundamentally—to construct

RRR(x, y) = rrr(u(x, y), v(x, y))

The functions {x(u, v), y(u, v)} satisfy the Cauchy-Riemann equations

∂x
∂u

= ∂y
∂v

, ∂x
∂v

= − ∂y
∂u

which are well known to be conformally invariant; there exist therefore infinitely
many conformal parameterizations of any given surface Σ, whether or not it be
a surface of revolution. For surfaces of the latter type the factorization of ds2

is made particularly simple by the diagonal structure of G(u, v).18 Conformal
parameterizations of the sphere and pseudosphere are worked out in the source
just cited. It was the latter that permitted Beltrami (1868) to devise the first
explicit model of the non-Euclidean geometry contemplated by János Bolyai
(1823) and Nikolai Lobachevsky (1829).19 That work engaged the creative
attention of Klein and Poincaré and the admiration of Hilbert, who considered
the work initiated by Bolyai and Lobachevsky to have been one of the two
greatest accomplishments of 19th century mathematics.

18 For factorization in the general case see “How to construct integrating
factors: applications to the isothermal parameterization of surfaces” (March,
2016), page 6.

19 That story is sketched on pages 8–13 of “Pseudospheric Tales” (February,
2016).
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That arbitrary surfaces Σ —not just surfaces of revolution—admit of
conformal (isothermal) parameterization was established by Gauss (1822), who
built upon a result special to surfaces of revolution that was obtained by
Lagrange in 1779.

Definition and properties of Liouville surfaces. Surfaces of revolution, when
presented in the {u, v}-parameterized form (12), can be inscribed with conformal
coordinates almost trivially. For (see again page 13) the 1st fundamental form

ds2 = E(u)du2 + G(u)dv2

—which informs us that the {u, v} parameters are already orthogonal (they
refer after all to medians and parallels)—can be written

ds2 = G(u)
[
W (u)du2 + dv2

]
: W (u) = E(u)/G(u)

Introduce a new parameter w by dw =
√

W (u)du; i.e., by

w(u) =
∫ u√

W (u′)du′ : inversely u = u(w)

Then
ds2 = λ(w) · (dw2 + dv2) : λ(w) = G(u(w))

The curves of constant w are simply medians to which we have assigned new
names, (still) manifestly orthogonal to the curves of constant v.

“Liouville surfaces” are surfaces Σ that admit of parameterizations in which
the 1st fundamental form assumes the structure20

ds2 = (U(u) + V (v)) · (du2 + dv2) (25)

Clearly, all surfaces of revolution are (set V (v) = 0) Liouville surfaces, but
not conversely. The specialized form that Liouville assigns in (25) to the
Λ-multiplier in (24) is—by no means accidentally, as will emerge—reminiscent
of the additive structure of the dynamical Lagrangians

L = 1
2u · (ξ̇2 + η̇2) + w1(ξ) + w2(η)

u
: u = u1(ξ) + u2(η)

that motivated Liouville to devise the ingenious separation of variables
procedure that bears his name in mechanics.21 That procedure acquires a
deeper aspect when rendered in the languages of Hamiltonian mechanics and

20 The surfaces that now bear his name were first discussed byJoseph Liouville
(1809–1892) in 1846. They are not mentioned in Rogers & Schief or in Andrew
Pressley’s text. They make brief appearances in Manfredo do Carmo’s
Differential Geometry of Curves & Surfaces (Exercise 21, page 263) and in
Barrett O’Neill’s Elementary Differential Geometry (Exercise 18, page 339).
They are treated fairly extensively in Eisenhart’s Treatise (§§91, 93, 98).

21 See “Kepler problem by descent from the Euler problem,” (1995), §§3 & 4;
Eli Snyder, “Euler’s Problem: The Problem of Two Centers,” (Reed College
thesis, 1996).
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Hamilton-Jacobi theory, and in that guise stimulated development of the general
“theory of integrable systems” (of differential equations), which contributes
centrally to the theory of solitons, and the flip side of which bears on the theory
of chaos. Recently, the theories of Liouville surfaces and Liouville separability
have (in quantum dress) fused.22 Indeed, they are near-simultaneous inventions,
fused already by Liouville himself. I turn now to an account of that pretty
accomplishment.

As previously remarked, Clairault’s theorem16 (1743) provides powerful
insight into the geometry of geodesics on surfaces of revolution. Does an
analogous result pertain to Liouville’s enlargement upon the theory of surfaces
of revolution?

Liouville surfaces Σ are surfaces that admit of a parameterization such that

ds2 = (U(u) + V (v)) · (du2 + dv2)

Write {u(t), v(t)} to describe a t-parameterized curve C on such a surface.
Length on such a curve is given by23

∫
ds =

∫ √
Ldt : L = (U(u) + V (v)) · (u̇2 + v̇2) (26)

and is extremal if {u(t), v(t)} satisfy the coupled differential equations
{

d
dt

∂
∂u̇

− ∂
∂u

}√
L =

{
d
dt

∂
∂v̇

− ∂
∂v

}√
L = 0

I long ago had occasion to demonstrate24 that—while Lp(q̇, q, t) and L(q̇, q, t)
generally give rise to distinct and inequivalent equations of motion—they give
rise to equivalent equations of motion when

p(p − 1)Lp−2 · L̇ · (∂L/∂q̇) = 0

and that for this to be the case it is sufficient that L be (i) t-independent
and (ii) homogeneous of degree n (= 1 in q̇. The “Lagrangian” (26) is indeed
t-independent and homogeneous (of degree n = 2), so we can drop the radical
(case p = 1

2 ) and obtain geodesic equations of the simplified (radical-free) form

2d
dt (W· u̇) − Wu(u̇2 + v̇2) = 0

2d
dt (W· v̇ ) − Wv(u̇2 + v̇2) = 0

: W (u, v) = U(u) + V (v)

22 See, for example, Thierry Daudé, Niky Kamran & Francois Nicoleau,
“Inverse scattering at fixed energy on asymptotically hyperbolic Liouville
surfaces,” arXiv:1409.6229v1 [math-ph] 22 Sep 2014 and recent papers cited
there.

23 I find it convenient in this discussion to adopt notation and terminology
standard to Lagrangian mechanics.

24 See “Geometrical mechanics: Remarks commemorative of Heinrich Hertz”
(1994).
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which when multiplied by (respectively) W· u̇ and W· v̇ become
d
dt (W

2u̇2) − Wuu̇W (u̇2 + v̇2) = 0
d
dt (W

2v̇2 ) − Wv v̇W (u̇2 + v̇2) = 0
(27)

Recall from mechanics Jacobi’s observation that if

J(q1, . . . , qn, q̇1, . . . , q̇n) =
n∑

k=1

pk q̇ k − L : pk ≡ ∂L/∂q̇ k

then25

J̇ = ṗk q̇ k + pk q̈ k − ∂L
∂qk

q̇ k − ∂L
∂q̇ k

q̈ k − ∂L
∂t

=
{

ṗk − ∂L
∂qk

}
q̇ k + (pk − pk)q̈ k − ∂L

∂t

= 0 if L is t-independent
In the present instance

J = 2W· (u̇2 + v̇2) − W· (u̇2 + v̇2)

= W· (u̇2 + v̇2) is seen now to be a constant, call it E

The geodesic equations (27) assume now the (nearly) separated form
d
dt (W

2u̇2) − d
dtU(u)E = 0

d
dt (W

2v̇2 ) − d
dtV (v)E = 0

which give

W 2u̇2 = UE + ε1E

W 2 v̇2 = V E + ε2E
: ε1E and ε1E are constants of integration

From the sum of those equations—which can be written

W ·W (u̇2 + v̇2) = WE = WE + (ε1 + ε2)E

—we have
ε1 + ε2 = 0

whence

u̇ =
√

E(U + ε)
U + V

v̇ =
√

E(V − ε)
U + V

The adjustable constant ε—not properly called a “separation constant” since
V (v) introduces v-dependence into the first and U(u) introduces u -dependence
into the second of those equations—serves to distinguish one geodesic from all

25 “Jacobi’s integral” follows also—and more elegantly, if not so swiftly—
from Noether’s theorem. When the momenta pk are promoted to the status
of independent variables J becomes the Hamiltonian, and J̇ = 0 becomes a
statement of energy conservation.
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others. We are placed now in position to write

du
dv

≡ tan ϕ =
√

U + ε√
V − ε

and arrive thus at Liouville’s analog (1846) of Clairault’s theorem:

V (v) sin2 ϕ − U(u) cos2 ϕ = ε (28)

Here ϕ refers to the slope at v of the ε-geodesic.26

The following formula—due to Liouville27

K = 1√
g

[(√
g

E
Γ 2

11

)

v
−

(√
g

E
Γ 2

12

)

u

]

Γ 2
11 = g–1

{
− 1

2FEu + EFu − 1
2EGv

}

Γ 2
12 = g–1

{
− 1

2FEv + 1
2EGu

}

—permits evaluation of Gaussian curvature in terms that refer only to the
metric structure of the surface (no reference to properties of the unit normal,
2nd fundamental form). If {u, v} refer to a conformal parameterization of Σ
then ds2 = λ(u, v)(du2 + dv2) gives E = G = λ(u, v), F = 0 whence

Γ 2
11 = − 1

2λ–1λv, Γ 2
11 = + 1

2λ–1λu

K = − 1
2λ–1(∂2

u + ∂2
v) log λ (29.1)

which on Liouville surfaces λ = U(u) + V (v) becomes

K = U2
u + V 2

v − (U + V )(Uuu + Vvv)
2(U + V )3

(29.2)

26 E. T. Whittaker (A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies (4th edition 1937), §43, page 67) reports that it was in 1849 that
Liouville established that the equations of motion that derive from Lagrangians
of the form L = T − V with

T = 1
2{u1(q1) + · · · + un(qn)}{v1(q1)q̇2

1 + · · · + vn(qn)q̇2
n}

V = w1(q1) + · · · + wn(qn)
v1(q1) + · · · + vn(qn)

are soluable by quadrature. Already by 1760 Leonard Euler had discovered the
integrability of the “two centers problem,” a special instance of the 3-body
problem in which a mass m moves in a plane under gravitational influence of two
fixed masses, M1 and M2. Whittaker (§53) remarks that in a suitable coordinate
system this system falls within the class of systems considered by Liouville. The
argument is elaborated in sources cited above.21 Liouville surfaces are seen to
fit naturally within this conceptual framework.

27 See “Differential geometry of some surfaces in 3-space,” (December 2015),
pages 12-13.
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In conformal coordinates the Laplace-Beltrami operator

∇2 = 1√
g
∂i
√

ggij∂j

becomes
∇2 = λ–1(∂2

u + ∂2
v)

which on Liouville surfaces reads

∇2 = 1
U(u) + V (v)

(∂2
u + ∂2

v)

Pavel Bleher, Denis Kosygin & Yakov Sinai28 have written in elaborate detail
about the eigenvalues of ∇2 on a 2-dimensional torus with a Liouville metric,
“which is in a sense the most general case of an integrable metric.”

28 “Distribution of energy levels of quantum free particle on the Liouville
surface and Trace formulae,” Comm. in Math. Phys. 170, 375–403 (1995). The
bibliography provides a good sense of the lively research tradition from which
such work derives; quantum chaos and semiclassical approximations (not the
theory of solitons) are central concerns.


